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Abstract-- In the field of statistical analysis, the study of the asymmetry of the distribution of a quantitative variable plays a very 
important role in the implementation of many methods. For example, it determines the validity of the use of arithmetic mean to describe 
phenomena, it is one of the main elements for choosing statistical tests appropriate for real data, etc. However, to date, the techniques 
used to assess the asymmetry of a quantitative variable require human interpretation, whether algebraic or graphical. This need for 
human interpretation limits the verification of the asymmetry of quantitative variables by analysts because their exploitation requires 
that the analyst has a perfect command of the Exploratory Data Analysis approach as developed by John Turkey, or an advanced 
knowledge of the conditions of validity of the statistical methods used. As a result, many analyses are carried out implicitly assuming 
the symmetry of the distributions of quantitative variables, which generally leads to abusive or erroneous conclusions. This misuse of 
statistical methods has been exacerbated by the systematic use of calculation software and the computational aspect of new analytical 
branches such as Artificial Learning, Data Mining and Data Science. The purpose of this paper is to propose a method for studying 
the asymmetry of the distribution of a quantitative variable capable of automatically identifying the symmetry or otherwise of the said 
variable without human intervention. The developed method is tested with simulated data obeying theoretical laws of probability as 
well as with existing real data. All calculations are performed with the programming language R. 
Keywords : quantitative variables, Exploratory Data Analysis, Asymmetry, Mustache Box, R Programming. 

——————————      —————————— 

1. INTRODUCTION  

 When analysing a distribution, the nature of the 
asymmetry of a quantitative variable is very important 
for the quality of the conclusions [1]. A distribution is 
symmetrical if the observed values are evenly 
distributed around the three central values : mean, 
mode and median [2] [3]. The use of the tools such 
as the bar graph or the histogram, from classical 
statistics, makes it possible to realize the symmetrical 
or not of a distribution. The examination of the 
moustache box, a tool developed by statistician John 
Tukey, also gives an idea of this question depending 
on whether the box and whiskers are symmetrical or, 
on the contrary, of smaller amplitude on the left 
(asymmetry on the left) or on the right (asymmetry on 
the right) [4]. Indeed, the nature of the asymmetry of 
a distribution impacts the choice of analytical tools. 
Parametric and non-parametric indicators are used in 
the analysis when the distribution is symmetrical.  
Otherwise (non-symmetrical distribution) the use of 

parametric indicators is excluded; only non-
parametric indicators can be used for the analysis. 

 

In general, the techniques of EDA are all graphical 
[5]. The analysis of the box plot for the purpose of 
assessing the symmetrical or not nature of a 
distribution is very often subject to errors [6]. Because 
it requires a human interpretation of the graph but 
they are often misinterpreted by analysts. This 
subjective assessment of these tools is very often a 
source of error in the conclusions of the analyses. In 
our work, it is a question of determining the nature of 
the symmetry or not of a distribution of a quantitative 
variable automatically, without interpreting the box 
plot. In this paper, we propose the approach of 
detecting the symmetric nature of a quantitative 
variable distribution by software, without graph 
interpretation. Our method was developed using the 
theory of box plot. It has the advantage of providing 
fixed limit values to detect the symmetrical or not 
nature of the distribution of a quantitative variable. 
This detection is done without requiring a human 
appreciation in the form of interpretation of a graph 
as do the existing classical tools (density curve, 
histogram, etc.). Then we use Lagrange polynomial 
interpolation to calculate these bounds. To simulate 
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the work performed, we implement the model 
obtained in the R language. 

 
2. THE MAIN ALGEBRAIC TOOLS FOR MEASURING 

ASYMMETRY 

Several algebraic indicators are used to measure the 
degree of asymmetry of a quantitative distribution. 
Although producing numerical values, there are no 
limit values from which a distribution can be 
considered symmetrical. The main algebraic 
indicators used are as follows: 

• The Fisher asymmetry coefficient 

The Fisher coefficient (skweness) is the square root 
of the Pearson 1β  coefficient. 

We have 2
2 ( )Var xµ σ= =  then the Fisher 

coefficient is as follows: 3
1 3

µ
γ

σ
=  

The interpretation of the Fisher coefficient is as 
follows : 

- if 1γ  tends towards 0 then the distribution is 
symmetrical 

- if 1γ  and moves away from 0 then the 
distribution is spread to the right; 

- if 1γ  and moves away from 0 then the 
distribution is spread to the left. 

The assessment of distance or proximity to 0 is 
subjective because it is left to the analyst's discretion. 

• The Yule coefficient 

The Yule coefficient is calculated from the position of 
quartiles 1Q , 2Q  and 3Q  and is written as follows : 

3 2 2 1

3 2 2 1

( ) ( )
( ) ( )
Q Q Q Q

S
Q Q Q Q

− − −
=

− + −
 becomes  

1 3 2

3 1

2Q Q Q
S

Q Q
+ −

=
−

 

- If S tends towards 0 then the distribution is 
symmetrical 

- If 0S > and moves further and further away 
from 0 then the distribution is spread to the 
right 

- If 0S <  and moves further and further away 
from 0 then the distribution is spread to the 
left 

The assessment of distance or proximity to 0 is 
subjective because it is left to the analyst's discretion. 

 

• Pearson's asymmetry coefficients 

There are two of them. The first is based on the 
average A and mode B. The second is defined from 
the centred moments of order 2 and 3. 

Coefficient 1 : oM
S

χ
σ
−

= . It is interpreted as the 

Yule coefficient. 

Coefficient 2 : 
2
3

1 3
2

µ
β

µ
= . It is the centered moment of 

order 2 squared divided by the moment of order 3 
cube. 2µ  being the variance. 

1β  can only take positive or zero values. 

- If 1β tends towards 0 then the distribution is 
symmetrical. 

- If 1β moves further and further away from 0 

and 3 0µ >  then the distribution is 
asymmetrically spread to the right. 

- If 1β moves further and further away from 0 

and 3 0µ <  then the distribution is 
asymmetrically spread to the left. 

The assessment of distance or proximity to 0 is 
subjective because it is left to the analyst's discretion. 

 
3. THE MAIN GRAPHICAL TOOLS FOR ASSESSING 

ASYMMETRY 

Several graphical tools are used to assess the 
asymmetry of a quantitative distribution. These 
graphical tools require a visual assessment of 
whether or not the distribution is symmetrical. The 
main algebraic indicators used are as follows : 

• The density plot 

kernel density estimation (KDE) is a non-parametric 
way to estimate the probability density function of a 
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random variable. Kernel density estimation is a 
fundamental data smoothing problem where 
inferences about the population are made, based on 
a finite data sample. Kernel density estimate (KDE) 
with different bandwidths of a random sample of 100 
points from a standard normal distribution. Grey: true 
density (standard normal). Red: KDE with 0.05h = . 
Green : KDE with 0h > . Black : KDE with 

0.0337h = . Let 1, 2( , , ..., )nx x x  be an sample drawn 

from some distribution with an unknown density f . 
We are interested in estimating the shape of this 
function ƒ. Its kernel density estimator is 

^

1 1

1 1
( ) ( ) ( )

n n
i

h h i
i i

x x
f x K x x K

n nh n= =

−
= − =∑ ∑  where 

( )K •  is the kernel — a symmetric but not necessarily 

positive function that integrates to one — and 0h >  
is a smoothing parameter called the bandwidth. A 
kernel with subscript h is called the scaled kernel and 
defined as ( ) 1 ( / )Kh x h K x h= . Intuitively one 
wants to choose as small as the data allows, however 
there is always a trade-off between the bias of the 
estimator and its variance. A range of kernel 
functions are commonly used: uniform, triangular, 
biweight, triweight, Epanechnikov, normal, and 
others. The Epanechnikov kernel is optimal in a 
minimum variance sense, though the loss of 
efficiency is small for the kernels listed previously, 
and due to its convenient mathematical properties, 
the normal kernel is often used ( ) ( )K x xφ= , where 
φ , is the standard normal density function. 

If Gaussian basis functions are used to approximate 
univariate data, and the underlying density being 
estimated is Gaussian then it can be shown that the 

optimal choice for h is

1
^ 5

5 ^
1 54

1.06
3

h n
n
σ

σ −= ≈
 
 
 
 

 

Where 
^
σ  is the standard deviation of the samples. 

 
• The symmetry plot 

The symmetric plot was developed by John Turkey. 
Suppose we have a collection of values values 

1 2, , ... nx x x . We will say that the values are 
symmetrically distributed if their quantile function 
satisfies :  

(0.5) ( ) (1 ) (0.5)Q Q p Q p Q− = − − , for 0 5p< < . 

This says that the pth quantile is the same distance 
below the median as the (1 - p)th quantile is above it. 
The obvious way to check the symmetry of a set of 
numbers is to plot the values  
 
 

1 2(1 ),..., (1 )nQ p Q p− −
 against the values of 

1 2( ),..., ( )nQ p Q p
. If the plotted points fall on the line 

y x= , then 1,..., nx x are symmetrically distributed. 
 

• The box plot 

A boxplot, also known as a box-and-whisker plot, is a 
convenient way to graphically present numerical 
data.  This plot is generated from the five-number 
summary of a distribution which consists of the 
smallest observation, the first quartile, the median, 
the third quartile, and the largest observation, written 
in order from smallest to largest.  The boxplot was 
introduced by John Tukey in 1977.  The center box 
(rectangle) of a boxplot contains the middle 50% of 
the ordered data.  The two edges of the center box 
indicate the first and third quartiles.  The range of the 
center box, which is also the difference between the 
third and first quartiles of the data, is usually known 
as the interquartile range ( IQR ).  The only line 
inside the box marks the median.  The line extending 
from the box out to the smallest observation contains 
the smallest 25% of observations and the line 
extended from the box out to the largest observation 
contains the largest 25% of observations.  These two 
lines that extend from the box are known as whiskers.  
The far ends of the two whiskers indicate the range 
of the data.  A symmetric distribution has two equal 
whiskers and a box separated into two equal parts by 
the median.  When this is not the case, the 
distribution is considered to be skewed to the right or 
to the left.  There is a provision for representing 
extreme values, which are determined using quartile 
and IQR   values of the data. 

- The interval quantile range ( IQ ) is 
calculated with the formula 3 1IQ Q Q= −   

- The upper extreme value limit is calculated 
with the formula 3 1.5*Q IQ+   

- The lower extreme value limit is calculated 
with the formula 1 1.5*Q IQ− . 
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4. OPERATION OF THE BOXPLOT 

Our method was developed using the theory of the 
moustache box. 

 

 

 

 

 

The median: Med or Me 
The quartiles : 1Q  , 3Q   

3 1IQ Q Q= −   : interval quantile range 

By posing 1

3 1

eQ M
Q Q

ε − −
=

−
  and   3

3 1

eQ M
Q Q

ε + −
=

−
  with 

3 1Q Q≠  we have :  

1 3

3 1

2 eQ Q M
Q Q

ε ε− + + −
Λ = + =

−
  

As defined, we notice that: 0ε − ≤  and 0ε + ≥ . 

 
5. THE DIFFERENT FORMS OF SYMMETRY NATURE 

We use the Λ  coefficient defined in a little above in 
each of the three cases of asymmetry. 

Case 1 : Asymmetric distribution on the left 

 

In the case of a left-hand distribution, the median 
tends to approach the third quartile 3Q . The more the 
distribution is spread to the left, the more the median 
tends to merge with the third quartile. In the extreme 

case, the median coincides with the third quartile (

3eM Q= ).  When we reach this limit, we have : 

 
1 3 1 3 3 1 3

3 1 3 1 3 1

2 2 1eQ Q M Q Q Q Q Q
Q Q Q Q Q Q
+ − + − −

Λ = = = = −
− − −

 

Indicator Λ   has a minimum value of 1− . 

 

Case 2 : Asymmetric distribution on the right 

 

In the case of a distribution spread to the right, the 
median tends to approach the first quartile 1Q . The 
more the distribution is spread to the right, the more 
the median tends to merge with the first quartile. In 
the extreme case, the median coincides with the third 
quartile 1( )eM Q= .  When we reach this limit, we 
have :  

1 3 2 1 3 1 3 1

3 1 3 1 3 1

2 2
1

Q Q M Q Q Q Q Q
Q Q Q Q Q Q
+ − + − −

Λ = = = =
− − −

 

Indicator Λ  has a maximum value of 1. 

 

 

 

 

 

Case 3 : Symmetrical distribution 

Q1 – 1,5*IQ Q3 – 1,5*IQ 

  

 

Q1 Q3 = Me 

Q3 Q1 = 
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In the case of a symmetric distribution, the median 
tends to position itself equidistant from the first and 
third quartiles. The more symmetrical the distribution, 
the more likely the median tends to merge with the 
mean value of 1Q  and 3Q . In the extreme case, the 

median coincides with the average of 1Q  and 

1 3
2 ( )

2e

Q Q
Q M

+
=  . When we reach this limit, we 

have:  

1 3
1 3

1 3 1 3

3 1 3 1

2 ( )2 0

Q Q
Q Q Q Q Q Q

Q Q Q Q

+
+ − + − +

Λ = = =
− −

 

The indicator has a central value of 0. 

 
6. DETERMINATION OF THE FUNCTION FOR 

DETECTING THE NATURE OF ASYMMETRY 

To establish our function for determining the 
asymmetric nature of a distribution, we used 
Lagrange's polynomial interpolation technique. More 
precisely, we wish to determine two functions −Ψ  
and +Ψ  such that : 

1

1

( 1.5 ) 1

( ) 1 2

( ) 0e

Q IQ

Q

M

−

−

−

Ψ − = −

Ψ = −

Ψ =







                                

 

3

1

( 1.5 ) 1

( ) 1 2

( ) 0e

Q IQ

Q

M

+

+

+

Ψ + =

Ψ =

Ψ =





  

Q  being the the interval quantile range 3 1( )Q Q−  . 
Let's pose : 

3

1

( ) ( )j
j

x f x
=

Ψ = ∑ with 
3

1

( ) k
j j

k j k
k j

x x
f x b

x x=
≠

−
=

−
∏  

When we apply the polynomial interpolation 
technique, we obtain the following two equations : 

 

(1) 

 

1 3 1 3
2

1 3

( 3 4 )(2 )
( )

6( )
x Q Q x Q Q

x
Q Q

+ + − − −
Ψ =

−
  (2) 

The function Ψ  is then given by : 

( ) ( )

( ) ( )

x x

x x

−

+

Ψ = Ψ

Ψ = Ψ





    
si
si

   
( )

( )
e

e

x M x

x M x

≤

>
 

 

The following graph shows the appearance of the 
graphical representation of function Ψ  obtained with 
a variable of 1000 observations according to a 
reduced centred normal distribution : 

Figure 1 : Typical pace of an Ψ  curve 

 

The curve obtained with function Ψ  developed for 
this article has a typical look of an inverted V for a 
symmetrical distribution. 

 

 

1 3 1 3
2

1 3

(2 )( 4 3 )
( )

6( )
x Q Q x Q Q

x
Q Q

− − − − +
Ψ =

−

MQ1 Q3 
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Automatic determination of asymmetry 

The automatic determination of asymmetry is based 
on three indicators using function ( )xΨ . These 
indicators are as follows : 

• Symmetrical centering index : 

 
 

• Median connectivity index : 

( ) ( )ICC Me Me+ −= Ψ − Ψ  

  
• Spread control index 

• [1 { | ( ) 1 2}] / [ { | ( ) 1 4}]ETD card x x card x x− = + Ψ ≤ − Ψ ≤ −   
• [1 { | ( ) 1 2}] / [ { | ( ) 1 4}]ETD card x x card x x+ = + Ψ ≥ Ψ ≥   
• ( ) ( )ETD ETD ETD+ −= −  

The idea of our approach is based on the fact that a 
symmetrical distribution must have values iSym , 
ICC  and ETD  below simultaneously precise 
thresholds. To identify these thresholds, we 
generated two thousand (2000) series according to a 
reduced centred normal distribution. Thus, in 
principle of the law of large numbers, the limits were 
obtained by using the arithmetic means of the values 
of each parameter obtained with the simulated data. 
Then, these values were empirically corrected using 
many simulated distributions. Based on this 
approach, a variable is symmetric if and only if it 
meets the following three conditions : 0.08iSym < , 

0.008ECC < and 0.4ETD < . 

The challenge of the proposed method is to be able 
to automatically detect if the distribution of a 
quantitative variable is symmetric or not. To do this, 
the approach presented above can be implemented 
using the following algorithm : 

 
Algorithm 1 : Automatic Asymmetry Detection 

1) Numerical variable input 1 2( , , ... )nX x x x=  

2) Calculate quartiles 1( )Q X , ( )eM X  and 

3 ( )Q X  

3) Calculate functions ( )X−Ψ  and ( )X+Ψ  
4) Create empty sets « ES », « EN », 

« GMin », « GMax », « Dmin » and 
« Dmax » 

5) Create a « Status » variable initialized with 
an empty character string 

6) For each mode ix  of X : 

If ( )x M Xi e<  then : 

a) Calculate ( )ix−Ψ  

b) If ( ) 1 2ix−Ψ ≥ −  then add 

ix  to ES  

c) If ( ) 1 4ix−Ψ ≥ −  then add 

ix  to GMin  

d) If ( ) 1 4ix−Ψ ≥ −  then add 

ix  to EN  

e) If ( ) 1 4ix−Ψ ≤ −  then add 

ix  to GMax  

Else 

a) Calculate ( )ix+Ψ  

b) If ( ) 1 2ix+Ψ ≤ then add ix  

to ES  

c) If ( ) 1 2ix+Ψ ≥ then add 

ix  to DMin  

d) If ( ) 1 4ix+Ψ ≤  then  ix  to 

EN  

e) If ( ) 1 4ix+Ψ ≥ then ix  to 

DMax  

End 

 End 

 

 

 

 

[ { | ( ) [ 1 4;1 4]}] / [ { | ( ) [ 1 2 ;1 2]}]iSym card x x card x x= Ψ ∈ − Ψ ∈ −
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7. TESTS WITH SIMULATED DATA 

Symmetrical distributions 

To test the automatic detection capability of the 
symmetrical or non-symmetrical nature of the 
distributions, simulations were performed using the R 
programming language. The following figures show 
the results obtained with simulated symmetric 
distributions : 

 
Figure 2 : Results on simulated symmetric distributions 

 

The paces of the density curves clearly show that the 
simulated distributions (Case 1 and Case 2) are well 
symmetrical. After being subjected to the algorithm, 
we can see that the parameters iSym, ECC and ETD 
of case 1 (iSym=0, ECC=0, ETD=0, ETD=0.33) and 
case 2 (iSym=0.03, ECC=0, ETD=0.35) are well 
below the limit values (iSym*=0.08, ECC*=0.008, 
ETD*=0.4) ; which proves that the algorithm has 
detected the symmetric character of the simulated 
distributions. 

 
Asymmetric distributions 

To test the ability of the developed method to 
recognize non-symmetric distributions, two non-
symmetric series were generated with R. The 
following figures show the results obtained with these 
distributions : 

 
Figure 3 : Results on simulated non-symmetric distributions 

 

The paces of the density curves clearly show that the 
simulated distributions (Case 1 and Case 2) are not 
symmetrical. After being subjected to the algorithm, 
we can see that the paces of the Ψ   curves are not 
inverted V. In addition, the parameters iSym, ECC 
and ETD of case 1 iSym=0 and ECC=0.02 are higher 
than the limit values iSym*=0.08, ECC*=0.008. 

 
The Symmetrical Illusion 

Some distributions, such as contaminated 
distributions, may have a symmetrical appearance. 
However, these distributions are not a coherent 
phenomenon. One of the challenges of the method is 
to verify the ability of our approach to reject this type 
of symmetry. To do this, almost symmetrical 
contaminated distributions were generated with R. 
The following figures show the results obtained with 
such distributions : 

 
Figure 4 : Results on simulated contaminated distributions 

 

The paces of the density curves clearly show that the 
simulated distributions (Case 1 and Case 2) are 
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contaminated distributions. After being subjected to 
the algorithm, we find that the appearance of the A 
curves seems to suggest that these distributions are 
symmetrical. But this visual interpretation is illusory. 
Indeed, if we look closely at the iSym, ECC and ETD 
indicators, it is easy to see that these two distributions 
are considered as non-symmetrical by the algorithm 
despite their appearance. In Case 1, the iSym and 
ETD indicators are well above acceptable limits ; 
while in Case 2, it is the iSym and ETD indicators that 
exceed tolerable limits. It is therefore clear that the 
algorithm is able to detect these situations of 
symmetrical false distributions. 

 
8. TESTS WITH REAL DATA 

Sepal distributions 

Tests on simulated data are supplemented by tests 
on real data. To do this, the iris database integrated 
into the R software was used. This database contains 
data on 150 iris flowers. For each iris, the length and 
width of the petals and the length and width of the 
petals were measured. The results of the sepal 
measurements are given in the following figure : 

 
Figure 5 : Results on sepal measurements of iris data 

 

The paces of the density curves clearly show that the 
lengths and widths of the petals have symmetrical 
distributions. The paces of the curves and the values 
of the iSym, ECC and EDT parameters show that the 
algorithm correctly identified these distributions as 
symmetric. 

 

Petal distributions 

The results on the petal measurements are given in 
the following figure : 

 
Figure 6 : Results on petal measurements of iris data 

 

The paces of the density curves show that the lengths 
and widths of the sepals have non-symmetrical 
distributions. 

CONCLUSION 

The method developed in this article is based on the 
properties of the boxplot and Lagrange polynomial 
interpolation. For a symmetrical distribution, it 
provides a graph in the form of an inverted V. 
However, simulations have shown that this pattern is 
only characteristic of symmetric distributions in the 
case of uncontaminated distributions. The main 
objective of the method is to automate the detection 
of asymmetry in a distribution. Simulations prove that 
the method is not only able to distinguish symmetric 
distributions from those that are not, but also has the 
ability to recognize illusory symmetry situations, 
especially in the case of contaminated distributions. 
The advantage of such a method lies in the possibility 
of automatically testing the asymmetry of the 
distributions of quantitative variables, which will make 
it possible to automate correct data analysis 
methodologies in the methods developed in order to 
reduce analytical errors due to a lack of knowledge of 
the limitations and validity conditions of statistical 
data analysis methods. With the tool developed in 
this paper, future work will be able to focus on 
automating many analytical processes that are 
difficult for users to control, such as statistical testing. 
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